在线留言| 联系时时彩平台官网| 网站地图|
全国服务热线
400-8560-998
全国办事处:总部 江苏昆山 浙江宁波 浙江温州
行业资讯

机器人机器视觉技术五大设计难题

来源:光学筛选机时时彩平台官网:2018-10-27

    机器视觉使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。目前,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。对于机器人视觉技术的设计,存在以下几个难点:
    一、打光的稳定性

    工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是App的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再利害的App也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。当然通过硬件相机分辨率的提升也是提高精度,抗环境干扰的一种办法了。比如之前的相机对应物空间尺寸是1个像素10um,而通过提升分辨率后变成1个像素5um,精度近似可以认为提升1倍,对环境的干扰自然增强了。

    二、工件位置的不一致性
    一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先做的第一步工作都是要能找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差。
    三、标定
    一般在高精度测量时需要做以下几个标定:第一,光学畸变标定(如果您不是用的App镜头,一般都必须标定);第二,投影畸变的标定,也就是因为您安装位置误差代表的图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。
    不过目前的标定算法都是基于平面的标定,如果待测量的物理不是平面的,标定就会需要作一些特种算法来处理,通常的标定算法是解决不了的。
    此外有些标定,因为不方面使用标定板,也必须设计特殊的标定方法,因此标定不一定能通过App中已有的标定算法全部解决。
    四、物体的运动速度
    如果被测量的物体不是静止的,而是在运动状态,那么一定要考虑运动模糊对图像精度(模糊像素=物体运动速度*相机曝光时间),这也不是App能够解决的。
    五、App的测量精度
    在测量应用中App的精度只能按照1/2—1/4个像素考虑,最好按照1/2,而不能向定位应用一样达到1/10-1/30个像素精度,因为测量应用中App能够从图像上提取的特征点非常少。
XML 地图 | Sitemap 地图